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Executive Summary  
This document details the methods and data sources for the Minnesota COVID-19 transmission 
model developed as part of a collaborative effort between the University of Minnesota (UMN) 
and the Minnesota Department of Health (MDH). It reflects updates through May 1, 2020 as 
part of developing Version 3.0 of the model and associated output. The model structure, 
methods of calibration, and parameter values are informed by a systematic review of published 
data, consultation with peers across the US, and other COVID-19 models in the literature. The 
age and comorbidity distribution of the model population is informed by data specific to 
Minnesota. 

There still remains substantial uncertainty in many key model parameters. Results of this 
model, not included in this methods documentation, must be interpreted in light of the 
uncertainty and limitations detailed at the end of this document. As such, updates to the model 
and revisions to the accompanying documentation should be expected as more research is 
published on COVID-19 in the United States. 

Background 
Eight days after the first case of SARS-CoV-2 infection was reported in Minnesota on March 8, 
2020, MDH confirmed “community spread” of the novel virus. Since then, social distancing 
orders have been issued by Governor Walz, requiring Minnesotans to avoid social contact 
outside the home as much as possible. In the absence of effective therapies or a vaccine, non-
pharmaceutical interventions such as social distancing and case isolation provide the best 
available strategies for mitigating the impact of the COVID-19 pandemic. To help inform state-
level decision-making, MDH partnered with UMN to develop a model of SARS-CoV-2 
transmission in Minnesota. This model was one factor among numerous considerations that 
contributed to the establishment of the series of non-pharmaceutical interventions in 
Minnesota: 

 K-12 school closures were instituted on March 18, 20201 

 This was followed by issuance of a statewide stay-at-home order that took effect on March 
28, 2020.2 

 On April 8, 2020, Governor Walz extended the statewide stay-at-home order until May 4, 
2020.3 

 On April 30, 2020, it was announced that the stay-at-home order would be further extended 
until May 18, 2020.4 

This document provides an overview of the model, including model structure, assumptions, 
parameter values, and model calibration. It reflects changes incorporated into model version 
3.0 through May 1, 2020. Thus, this technical document supersedes earlier releases and 
associated documentation. The associated R code has been made publicly available on Github 
(https://github.com/orgs/MN-COVID19-Model) and initial results can be reviewed online at 
Minnesota's COVID-19 response website (https:/mn.gov/covid19/data/modeling/). 

  

https://github.com/orgs/MN-COVID19-Model
https://mn.gov/covid19/data/modeling/
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Methods 
Model structure 
We used an extended susceptible-exposed-infectious-recovered (SEIR) model that accounts for 
the age and comorbidity distributions of the population of Minnesota to assess the potential 
impact of specific non-pharmaceutical interventions (Figure 1). The model tracks the number of 
Minnesota residents who are susceptible, exposed, infectious, and recovered from the virus on 
a daily basis. 

Individuals without prior SARS-CoV-2 infection are initially assumed to be in the susceptible 
state (“S”). When susceptible individuals become infected, they first transition to the exposed 
state (“E”), which reflects a pre-symptomatic, pre-infectious incubation period. From the 
exposed state, a proportion of individuals progress to an asymptomatic infectious state (“AI”), 
which reflects subclinical infections (e.g. infections that develop mild or no symptoms for the 
entire duration of infection). Remaining individuals in the exposed state transition to the 
symptomatic infectious state (“I”). We assume that symptomatic and asymptomatic infections 
are equally infectious and have the same average infectious period. In the model, we include 
multiple exposed states (𝐸𝐸1, . . . ,𝐸𝐸𝑚𝑚) and multiple infectious states (𝐴𝐴𝐴𝐴1, . . . ,𝐴𝐴𝐴𝐴𝑛𝑛;  𝐴𝐴1, . . . , 𝐴𝐴𝑛𝑛) to 
reflect more realistic heterogeneity in the duration of the incubation and infectious periods 
than is typically reflected in a standard SEIR model. Additional detail is provided below.   

Symptomatic infections have a probability of requiring hospitalization with or without 
mechanical ventilation (“ICU” and “H” states, respectively). Following infection, individuals can 
recover to the recovered state (“R”), where we assume individuals retain complete immunity 
over the modeled time horizon. We also model the risk of death (“D”) for those in the “H” and 
“ICU” states, and the possibility of out-of-hospital death directly from the “I” state for 
symptomatic individuals. The model is implemented as a set of difference equations, which 
approximate ordinary differential equations that describe how individuals move between 
states. These equations are provided in the Appendix. 



M O D E L I N G  T H E  I M P A C T  O F  S O C I A L  D I S T A N C I N G  M E A S U R E S  O N  T H E  S P R E A D  O F  S A R S -
C O V - 2  I N  M I N N E S O T A — T E C H N I C A L  D O C U M E N T A T I O N  ( U P D A T E D  M A Y  1 3 ,  2 0 2 0 )  

3 

  
Figure 1: SEIR model diagram for the Minnesota (MN) COVID-19 Model. S: Susceptible; E1...Em: Exposed; AI1...A1n: Subclinical 
infection; I1...In: Symptomatic infection; H: Hospitalized and not ventilated; ICU: In ICU and ventilated; R: Recovered; D: Dead. 

Analysis 
We used the model to predict epidemiological outcomes for one year (March 23, 2020 through 
March 22, 2021) to capture both the short- and long-term effects of different mitigation 
strategies under currently available evidence about the pathogen and the resulting disease. 
Epidemiological outcomes include the cumulative number of SARS-CoV-2 infections, the 
cumulative number of COVID-19 deaths, the number of intensive care unit (ICU) beds 
(equipped with ventilators) needed at peak demand, and time to reach ICU bed (with 
ventilator) capacity under assumptions of surge capabilities. All analyses were run in R v3.5.3, 
an open source programming language and software environment used widely for statistical 
computation, mathematical modeling, and data visualization. 
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Key Model Parameters 
Model parameters are summarized in Appendix Table S1. 

Population structure 

In light of evidence of substantial heterogeneity in COVID-19 mortality by age and underlying 
comorbidities, we stratified our model population by nine 10-year age groups (0-9, …, 70-79, 
80+; indexed by α) and by comorbidity status (no comorbidities vs. ≥1 comorbidity; indexed by 
κ). The size and age distribution of the population of Minnesota was informed by data from the 
Minnesota State Demographics Center.5 Age-specific prevalence of relevant underlying 
conditions was determined from an analysis of the Minnesota All Payer Claims Database 
(Appendix Table S2).6 Underlying conditions included chronic obstructive pulmonary diseases 
(COPD), cardiovascular disease (ischemic heart disease or heart failure), diabetes, poorly 
managed hypertension, and cancer, which are indicated as potential risk factors for poor 
COVID-19 outcomes.7  

Disease progression  

Durations for the incubation and infectious periods were taken from estimates reported in the 
literature.8,9 Unlike traditional compartmental models which assume that these periods are 
exponentially distributed, we model individual heterogeneity in incubation and infectious 
periods as gamma distributed, which is more realistic.10  This is achieved by including multiple 
“E” (e.g. E1, ... Em) and multiple “I” and “AI” states (e.g. I1, ...In; AI1, ...AIn).11 Gamma distributions 
are parameterized in terms of shape, 𝑘𝑘, and scale parameters, 𝜃𝜃. In a compartmental model, 
the number of states corresponds to the shape parameter, 𝑘𝑘, while the transition rate between 
states correspond to 1/𝜃𝜃. Note that the mean of a gamma distribution is equal to 𝑘𝑘𝜃𝜃. The 
shape and scale parameters were selected to match the mean and/or percentiles characterizing 
incubation and infectious periods reported in the literature. For the incubation period, the 
mean was estimated to be 5.2 days with a 95th percentile of 12.5 days.8 This was best fit by 
having two exposed compartments with a daily transition rate of 2/5.2=0.38 (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘 =
2, 𝜃𝜃 = 5.2

2
), mean: 5.2; 95th percentile: 12.3). For the infectious period, parameters were 

selected to match a median of 7 days and interquartile range (IQR) of 3-9 days.9 This was best 
fit by having three infectious compartments and a daily transition rate of 3/7.8=0.38 
(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘 = 3,𝜃𝜃 = 7.8

3
), mean: 7.8; median: 7.0; IQR: 4.5 – 10.4).  

Contact and Transmission 

An age-based contact matrix (included with the code), CM[i,j], was used to indicate the 
frequency of daily contact between age groups i and j. The contact structure was taken from a 
study that extrapolated the 2008 POLYMOD study in Europe to reflect the US population.12 The 
contact matrix was further scaled to reflect the demographics of the Minnesota population. We 
assumed the same contact patterns for those with and without underlying comorbidities.  

The rate at which a susceptible individual in age group 𝑖𝑖 become infected is equal to the 
product of the probability of transmission per infected contact (𝛽𝛽) and the total number of 
infected contacts per time step, 𝜆𝜆𝑖𝑖:  
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�
𝐴𝐴𝛼𝛼 + 𝐴𝐴𝐴𝐴𝛼𝛼
𝑛𝑛𝛼𝛼

9

𝛼𝛼=1

∗ 𝐶𝐶𝐶𝐶[𝑖𝑖,𝛼𝛼] 

where 𝐴𝐴𝛼𝛼 and 𝐴𝐴𝐴𝐴𝛼𝛼are the number of symptomatic and asymptomatic infectious individuals in 
age group 𝛼𝛼 and 𝑛𝑛𝛼𝛼 is the number of alive individuals in age group 𝛼𝛼. Those who are 
asymptomatic are assumed to be equally infectious as those who have symptomatic infections. 

Due to the inclusion of population stratification, age-specific mixing patterns, and gamma-
distributed incubation and infectious periods, the analytical calculation of R0 is complex. We 
therefore used empirical methods to estimate 𝑅𝑅0 based on doubling times in the first 20 days of 
our simulation (without mitigation).13 We varied 𝛽𝛽 until we achieved an 𝑅𝑅0 of 3.87, which was  
consistent with 𝑅𝑅0 estimates from 11 European countries in the early un-mitigated phases of 
their COVID-19 epidemics.14  

Hospitalization and Mortality 

A mean duration of 11 days from hospitalization to recovery or death was used for those who 
did not receive mechanical ventilation and a mean duration of 8 days was used for those who 
did receive mechanical ventilation in the ICU.15 Average lengths of hospital and ICU stay used in 
the model do not currently depend on age due to a lack of sufficiently complete data. Age-
specific proportions of symptomatic cases requiring hospitalization or ICU care, as well as the 
proportion of hospitalized or ICU cases who die, were informed by recently published data from 
the CDC and a study of outcomes among hospitalized patients in New York.7,16 We equated 
being in the ICU with requiring a ventilator, thus estimates for ICU are based on those who 
required a ventilator. We also allow for mortality to occur outside of the ICU or hospital. 
Parameters governing this process were estimated via calibration (described below).  

The reported data on hospitalization and mortality did not align with our 10-year age group 
categories. To allow us to estimate the necessary age-specific probabilities of hospitalization, of 
admission to the ICU conditioned on hospitalization, of dying in the ICU (on ventilator), and of 
dying in the hospital but outside of the ICU (off ventilator), we fit linear regression models to 
the observed proportions. The midpoint of the reported categories was used as the predictor 
with polynomial terms included to improve fit. Predicted probabilities for the midpoint of our 
10-year age group were computed for each regression model. Logit transformations of the 
observed probabilities were used when they improved fit. Model fit to the observed 
probabilities was excellent (R-squares between 90% and 99%). 

The number of available ICU beds with ventilators in the state of Minnesota assumed to be 
available for COVID-19 patients was obtained through communication with MDH (capacity as of 
March 22, 2020 was 235; as of April 4, 2020, this has been expanded to 2,200). If at a given time 
step the number of individuals requiring ICU care exceeded the state’s capacity, we calculated 
the 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  parameter that reflects the proportion of COVID-19 patients requiring an ICU 
bed (with ventilator) who will be unable to access one, as follows:  

𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  
∑ 𝐴𝐴𝐶𝐶𝑈𝑈𝛼𝛼 − 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼9
𝛼𝛼=1

∑ 𝐴𝐴𝐶𝐶𝑈𝑈𝛼𝛼9
𝛼𝛼=1
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where 𝐴𝐴𝐶𝐶𝑈𝑈𝛼𝛼 is the number of individuals of age 𝛼𝛼 requiring an ICU bed (with ventilator) in the 
current time step and 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 is the statewide capacity of ICU beds with a ventilator 
available for COVID-19 patients. In each age group, the 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 proportion of patients 
needing ICU care (with ventilator), representing those patients needing care in excess of 
statewide capacity, were assumed to die after 1 day of unmet need. The remaining (1 −
𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) proportion of patients needing ICU care (with a ventilator) were assumed to 
experience an average length of stay and face age-specific ICU mortality risks, as summarized in 
Table S3. 

Model initialization 

The initial number of infections in the model was estimated from the number of confirmed 
COVID-19 cases reported by MDH as of March 22, 2020. Due to limited testing at the time, 
confirmed cases likely reflected just a small fraction of the total number of infections in the 
state at the time. Thus, the model was initialized with a total number of infections calculated by 
scaling up the total confirmed cases as of March 22, 2020 to account for undetected cases. 
Because the probability of infections being detected in Minnesota at that time was highly 
uncertain, we estimated this parameter by calibrating the model to observed COVID-19 
outcomes in Minnesota (described below). It is important to note that this parameter was only 
used in the initialization of the model and was not used at any point later in the simulation.  

Once the total initial number of infections was determined, confirmed cases were assigned to 
the appropriate state, stratified by age and hospitalization/ICU status. Non-hospitalized 
confirmed cases were assigned to the last symptomatic state (“𝐴𝐴𝑛𝑛”) of the appropriate age 
stratum. Estimated undetected infections were assigned across the exposed, asymptomatic, 
and symptomatic infected states and according to each age group based on the age distribution 
of infections observed in our model when 20,000 cumulative infections were reached. The age 
distribution at this number of infections was chosen because this was approximately the 
number of infections predicted to be in Minnesota on March 22, 2020 under input parameter 
values that resulted in a well-calibrated model. The age distribution of infections was also fairly 
stable at this point in the epidemic. 

Non-pharmaceutical interventions 

The model allows for the inclusion of different non-pharmaceutical interventions in the form of 
contact reduction strategies. We included four different types of contact reduction: 

1. Shelter-in-place: equivalent to Minnesota’s stay-at-home order, this strategy is assumed to 
be the most restrictive and have the greatest reduction in contact rates. 

2. General social distancing: equivalent to the early measures taken in Minnesota to mitigate 
COVID-19 spread, including K-12 school closures and work-from-home recommendations.  

3. Social distancing among vulnerable: a targeted social distancing strategy in which only 
those aged 60 years and older are assumed to engage in reduced contact with others. 

4. Sustained social distancing: a modest contact reduction that may be sustained once other 
measures are lifted. 
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Each strategy is defined in terms of the percentage contact reduction achieved and in which 
population it applies. All strategies are assumed to result in the same contact reduction for all 
age groups, except for the social distancing strategy targeted to vulnerable groups. Each 
strategy can have a different start and end date in the model simulation. End dates for 
strategies can also be defined as some number of days past the peak of some measurable 
COVID-19 metric, such as deaths or hospitalizations. In general, specifying overlapping start and 
end dates for multiple mitigation measures results in the most restrictive measure superseding 
any other measure. That is, structurally, mitigation strategies cannot be combined for 
additional benefits. The one exception is the targeted social distancing among vulnerable 
groups and sustained social distancing. If both strategies are in force at the same time, 
vulnerable individuals reduce their contacts according to the targeted contact reduction rate, 
while the rest of the population reduces their contacts according to the sustained behavior 
change contact reduction rate.  

Model Calibration 

The model was calibrated to reproduce two key outcomes: the cumulative number of COVID-19 
deaths and prevalent COVID-19 hospitalizations recorded in Minnesota from March 23 through 
April 25, 2020. For the model calibration, the model was parameterized to reflect the timing of 
the different contact reduction strategies instituted in Minnesota over the calibration time 
period, which included general social distancing (school closures and recommendations to work 
from home) in force from March 23 – March 27, 2020, followed by the more restrictive stay-at-
home order from March 28, 2020 onward (which is still in effect at the writing of this report). 
Model input parameters estimated through calibration were the initial proportion of infections 
detected on March 22, 2020 in Minnesota, the proportion of subclinical infections, the 
proportion of symptomatically infected individuals aged 80 years and older requiring 
hospitalization, the probability of symptomatically infected individuals aged 70 years and older 
dying without ever being hospitalized, the percentage contact reduction resulting from the 
stay-at-home order, and the percentage contact reduction resulting from social distancing. 
Plausible ranges for these input parameters are summarized in Table 1. It should be noted that 
while we only vary the probability of hospitalization among symptomatically infected 
individuals over the age of 80, this value was then used to calculate the proportion of 
symptomatically infected people in other age groups by multiplying by the age-specific relative 
risk of hospitalization, as summarized in Table S3. We assumed the relative risk of 
hospitalization by age compared to those aged 80 years and over (e.g. risk of hospitalization for 
20-29 year-olds vs 80+; 30-39 year-olds vs 80+; etc.) was the same as in a recent CDC report on 
national COVID-19 outcomes.14 By calibrating the proportion of symptomatic infections 
requiring hospitalization in 80+ year-olds (the reference category), we are able to increase or 
decrease hospitalization probability across all age groups to match observed trends in 
Minnesota. 

The goodness-of-fit of model outputs to observed data was measured using a log-likelihood 
function. We used the Nelder-Mead optimization algorithm to identify best-fitting parameter 
sets. We ran the Nelder-Mead algorithm17 700 times from different, randomly sampled starting 
conditions to avoid identifying local maxima. The 700 Nelder-Mead runs yielded 408 unique 
parameter sets. Because we were estimating multiple parameter values through calibration, 
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there was not a single, unique best-fitting set of parameter values. Instead, 47% (n=191) of runs 
yielded parameters sets with log-likelihood values within 5% of the maximum log-likelihood. 
These 191 parameter sets were retained to generate uncertainty intervals around model-
predicted outcomes. For the purposes of the public release of the model code, we have set 
input parameters to the set of parameter values that approximately yielded median results in 
model outcomes. This set of parameter values is known as our “base case” parameter set and is 
summarized in Table 1. 

Model-predicted prevalent hospitalizations and cumulative deaths are shown for the base case 
parameter set in Figures 2 and 3, respectively, alongside the MDH data points used as 
calibration targets. As a point of validation, the calibrated base case parameters were used to 
generate estimates of the prevalent number of ICU beds occupied over the same calibration 
time period, which we compared to observed ICU bed occupancy (Figure 4). It should be noted 
that the definition of the ICU compartment in this model only includes individuals who need 
invasive mechanical ventilation, not every individual who is admitted for critical care to the ICU. 
Among hospitalized patients in New York, the majority of COVID-19 patients in the ICU did 
receive mechanical ventilation,7 consistent with expert opinion (personal communication, Dr. 
John Hick, April 13, 2020).  

As a point of validation, we calculated the proportion of deaths occurring outside health care 
settings (e.g., at home or in congregate living settings) predicted by the model and compared 
that to death information reported by MDH, which was not used as a calibration target. As of 
April 25, 2020, the model predicted 69.7% of cumulative deaths to occur outside of health care 
settings, compared to 65.0% observed in MDH data.  

 

Table 1: Calibrated Parameter Values and Ranges Used for Calibration 

Parameter Plausible 
initial range 

Calibrated 
value 
(base case) 

Probability of infection being detected (prior to March 22, 2020) 0.001 – 0.100 0.021 

Proportion of infections which are asymptomatic or mild 0.20 – 0.60 0.41 

Proportion of symptomatic, infected individuals aged 80+ who get hospitalized 0.05 – 0.40 0.103 

Probability that individuals aged 70+ with a symptomatic infection die at home 0 – 0.15 0.139 

Percentage contact reduction under the stay-at-home order 30% – 85%  55.1% 

Percentage contact reduction under social distancing 10% – 50% 37.6% 
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Figure 2: Number of COVID-19 patients receiving care in the hospital from March 22 (day 1) through April 25 (day 35) predicted 

by the model (black circles) and reported in state surveillance data (green diamonds) from MDH. 

 
Figure 3: Cumulative number of COVID-19 deaths from March 22 (day 1) through April 25 (day 35) predicted by the model 

(black circles) and reported in surveillance data (yellow diamonds) from MDH. 
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Figure 4: Number of COVID-19 patients receiving care in the ICU from March 22 (day 1) through April 25 (day 35) predicted by 
the model (black circles) and reported in surveillance data (blue diamonds) from MDH. Note that surveillance data reflect ICU 

bed occupancy both with and without mechanical ventilation, while ICU demand in the model is parameterized in terms of 
mechanical ventilation needs. 

Minnesota Mitigation Scenarios 
In the code released alongside this documentation, we include several mitigation strategy 
scenarios that were modeled for the state of Minnesota through May 1, 2020; after that the 
code was held static to prepare for publication. Although some of the scenarios align roughly 
with Executive Orders issued by Governor Walz, they should be viewed as hypothetical and 
static scenarios. This means they represent rough approximations of changes in contact (or lack 
thereof) and they have been generally designed to end at some point during the summer of 
2020. These scenarios should not be viewed as model-derived recommendations – for one, 
they predict sharp peaks in health care demand and significant mortality – or as likely outcomes 
of decision-making. Instead, they represent illustrations of different, time-limited mitigation 
strategies. As noted in the introduction, state leaders are using a variety of data and factors in 
their decision-making, only one of which are projections from mathematical models. 

Scenario specifications 

The first scenario (“Scenario 1”) is a no mitigation scenario, projecting outcomes under the 
assumption that individuals do not reduce their contact with others and that there is no 
expansion in statewide ICU capacity. All other scenarios include the achieved statewide ICU 
capacity increase (as of the writing of this report) to 2,200 beds and an initial period of general 
social distancing (reflecting the policies in effect from March 23 – March 27, 2020 in Minnesota) 
followed by some period of a shelter-in-place policy (akin to Minnesota’s stay-at-home order 
that began March 28, 2020). The second scenario (“Scenario 2”) simulates outcomes if the stay-
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at-home order had expired after the initially announced two weeks (on April 11, 2020), 
followed by an additional three weeks of general social distancing. The third scenario (“Scenario 
3”) extends the second scenario by including continued social distancing for vulnerable groups 
(in our model, those 60 aged years and older) until 30 days past the state’s peak in COVID-19 
deaths. The fourth scenario (“Scenario 4”) is the same as the third, except that the shelter-in-
place policy remains in force for six weeks instead of just two. In these scenarios, general social 
distancing is defined as reducing contacts by 37.5% across all age groups, while the stay-at-
home order is defined as reducing contacts by 55.1% across all age groups, which are the 
contact reductions we estimated through model calibration. Social distancing among vulnerable 
groups is assumed to result in a 50% reduction in contacts among those 60 years and older.  

Uncertainty Analysis 

To generate uncertainty intervals around our model projections for the scenarios described 
above, we ran the model for each of the 191 “good-fitting” parameter sets retained from the 
Nelder-Mead calibration. For each parameter set, we generated all model outcomes 
(cumulative deaths, ICU demand, etc.). We reported the 2.5% and 97.5% percentiles of these 
outcomes to reflect the uncertainty around our projections. The point estimates given for each 
scenario are the model-predicted outcomes for the base case parameter set. The base case 
parameter set was chosen to approximately reflect the median cumulative number of deaths 
under “Scenario 4” (which most closely reflects policies enacted by state policymakers). Note 
that generating the uncertainty results is computationally intensive and we have not included 
this capability in the public code release. Results from the uncertainty analysis are presented in 
the slides accompanying this release, while the code has default inputs set to base case 
parameter values, which allows users to generate plots of the base case curves. 

Limitations  
 Published estimates of the basic reproductive number (R0) are highly variable. The 

probability of transmission per effective contact is currently estimated by adjusting the 
model to reflect published values of the R0 for SARS-CoV-2 under a no mitigation scenario. It 
is important to note that R0 can vary by geography and population. Implementation of 
mitigation strategies also influence rate of infection growth and any empirical estimates of 
R0 (or more precisely, the effective reproductive number, Rt).  We anticipate continual 
updates to published R0 values, particularly as more data from the US become available; 
results of this model will also change accordingly.  

 Death outside of ICU care settings is still poorly understood. While our model has been 
expanded to account for mortality that occurs in the hospital setting as well as outside the 
hospital itself, these mortality risks are uncertain. Estimates may change as the epidemic 
progresses, and COVID-19 deaths outside of healthcare settings may be undercounted.  

 There is still great uncertainty around proportions of infections that remain undetected or 
are asymptomatic. Testing availability for SARS-CoV-2 is suboptimal across the US; more 
challenging for model-based predictions, however, is the heterogeneity in testing policies 
across states and over time. In addition, new information is continually emerging regarding 
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infections acquired from presumably asymptomatic cases. Updates on these epidemiologic 
features will also necessarily alter estimates generated by this model. 

 The role of asymptomatic infection in contributing to the spread of SARS-CoV-2 is 
uncertain. The role of asymptomatic infections and whether and how they contribute to the 
spread of SARS-CoV-2 is still being determined. Although we have expanded the model to 
specifically account for asymptomatic infections, the estimated proportion of infections that 
are asymptomatic remains uncertain. As more robust data become available, this 
parameter and range will be updated accordingly. 

 The increased risk of death from COVID-19 due to an existing co-morbid condition is not 
accounted for in this version of the model. The limited quality and completeness of 
currently published U.S. data on COVID 19 mortality does not allow us to separately model 
the increased risk due to underlying co-morbidities. As such, while the majority of people in 
the ICU who were ventilated had a co-morbidity, in this version of the model we include but 
do not apply a multiplier. In future iterations, as more robust data become available on 
specific comorbid conditions and the increased risk of death in the ICU, hospital or other 
settings become available, we will update our model accordingly.  

 Hotspot outbreaks. A limitation of our model is that it has been developed to reflect the 
dynamics of SARS-CoV-2 transmission for Minnesota as a whole. While we are able to 
reproduce the deaths occurring in the general population, deaths occurring in specialized 
settings such as nursing homes may be underestimated. We do validate our model’s 
projections by comparing the proportion of deaths occurring out-of-hospital projected by 
our model against surveillance data and find similar results (69.7% vs. 65.0%). COVID-19 
outcomes associated with unique settings, such as nursing homes, would need to be 
addressed in future iterations.  

 Death rates in and out of hospitals have not been established. Information on the 
probability of death (either in ICU, in the hospital but not in the ICU, or at home) is 
inadequate. Adequate data are not available in U.S. settings. The data we used to 
parameterize our model from NYU hospital admissions includes cases that have not yet 
resolved. A number of cases may yet die from COVID-19, in which case our fatality rates 
could be underestimates. 
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Next Steps  
In the service of informing decision-making and public interest into the pandemic and its 
response, the research partnership between the UMN School of Public Health and MDH is 
committed to continuing to refine and expand this disease model. 

This will consist of reviewing the literature and updating parameter estimates on an ongoing 
basis, which is particularly important as more robust U.S. or Minnesota data (where applicable) 
become available. The research team is currently exploring ways to make the model useful to a 
broader set of applications, including accounting for testing and newly available treatments,18 
examining methods for accounting for hotspots such as nursing homes, incorporating 
information on local contact patterns as these become available, exploring ways to incorporate 
geographic differences in disease spread and impact, and considering ways to model cyclical 
mitigation strategies.  
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Appendix 
Equations E1-11 

 
Footnote: The subscripts “I”, “ICU”, and “H” are used to denote when a probability applies only to that state. The subscripts “α” 
and “κ” indicate a parameter’s dependence on age group or comorbidity group respectively. The subscripts “n” and “b” refer to 
whether a ventilator is available for those who need one; “n” indicates no ventilator is available, “b” indicates a ventilator is 
available. For example, prob(dieICU,n,α,κ) is the probability that someone who needs a ventilator in the ICU when a ventilator is 
not available will die, and this value is dependent on the age of the person.   
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Table S1. Parameter definitions, values, and sources 

Name Definition Estimate Data source 
setting 

β Probability that contact with an infectious 
person results in an infection 

Calculated using 
estimates of R0: 
3.87 

(details of β 
calculations in 
methods section)  

Multiple 
European 
countries14 

λ Number of contacts per time step that one age 
group has with infected individuals 

See methods 
section for 
calculation 

European 
countries 
scaled to 
US 
population 
structure12 

prob(tE) Probability of transitioning through an exposed 
state at each time step 

Calculated from 
estimated mean 
incubation 
period: 5.2 days  

China, 
national8 

prob(tI) Probability of transitioning through an infected 
state at each time step 

Calculated using 
estimated mean 
time from 
symptom onset to 
hospital: 7.8 days  

United 
States (14 
states)9 

prob(tICU,b ) Probability of transitioning out of the ICU at 
each time step when a ventilator is available 

Calculated using 
estimated time 
from ICU 
admission to 
recovery or 
death: 8 days  

China 
(Wuhan)15 

prob(tICU,n ) Probability of transitioning out of the ICU at 
each time step when a ventilator is not available 

Calculated 
assuming that 
people who need 
a ventilator but 
do not get one 
will spend an 
average of 1 day 

Assumption 
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in the ICU 
compartment 

prophosp Proportion of symptomatic infections requiring 
hospitalization 

See table S3 US, 
national16  

propICU Proportion of hospitalized individuals who need 
ICU with ventilator  

See table S3 US (New 
York City)7  

prob(tH ) Probability transitioning out of the hospitalized 
state (per time step) 

Calculated from 
estimated 
duration of 
hospitalization: 

11 days   

China 
(Wuhan)15 

prob(dieH) Probability of dying in the hospital when not in 
need of ICU with ventilation 

See table S3 US (New 
York City)7 

prob(dieICU,b) Probability of dying when ventilated and in the 
ICU when a bed is accessible 

See table S3 US (New 
York City)7 

prob(dieICU,n) Probability of dying when in the ICU when a 
ventilator is not accessible 

 1 Assumption 

ICUoverflow Proportion of individuals who require an ICU 
bed with ventilator but cannot access due to 
capacity being reached  

Calculated, see 
methods section 

Calculated 
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Table S2. Age distribution and age-stratified proportion of Minnesotans with 
one or more underlying conditions. 

Age group (years) Population sizei 
(N) 

Proportion of total 
populationi 
(%) 

1 or more underlying 
conditionii 
(%) 

0 to 9 643,010 11.3 1.2 

10 to 19 732,001 12.9 2.3 

20 to 29 731,088 12.9 3.8 

30 to 39 764,590 13.4 6.9 

40 to 49 678,395 11.9 12.5 

50 to 59 717,300 12.6 21.4 

60 to 69 714,641 12.6 30.1 

70 to 79 440,582 7.7 43.6 

80+ 265,554 4.7 55.9 

iMinnesota State Demographic Center, 2020 projections.5 

iiMinnesota All Payer Claims Database, 2017.6 Underlying conditions included chronic obstructive pulmonary disease, 
cardiovascular disease (ischemic heart disease or heart failure), diabetes, poorly managed hypertension, and cancer. 
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Table S3. Age-specific hospitalization parameter estimates 

Age 
group 
(years) 

Proportion of 
symptomatic 
infections 
requiring 
hospitalizationi 

Relative 
proportion of 
symptomatic 
cases requiring 
hospitalization  
(ref: 80+)ii 

Proportion of 
hospitalized 
cases requiring 
ICU care 
(ventilation) 
 

Proportion of 
deaths among 
hospitalized cases  
(no ventilator) 
 

Proportion of 
deaths among 
ICU cases ever 
on a ventilator 
 

  probICU prob(dieH) prob(dieICU,b) 
0-9 0.0115 0.0184  0.1304  0.0000  0.0005  
10-19 0.0496 0.0793  0.1196  0.0000  0.0424  
20-29 0.1234 0.1972  0.1351  0.0003  0.1002  
30-39 0.2060 0.3293  0.1711  0.0043  0.1738  
40-49 0.2712 0.4333  0.2219  0.0186  0.2633  
50-59 0.3206 0.5123  0.2719  0.0365  0.3686  
60-69 0.3758 0.6006  0.2962  0.0538  0.4897  
70-79 0.4679 0.7477  0.2703  0.0957  0.6267  
80+ 0.6258 1.0000  0.1877  0.2874  0.7795  

iData on COVID-19 hospitalization rates reported by CDC16 was used to calculate the relative proportion of symptomatic 
infections needing hospitalization by age group rather than used as direct input. 

iiTo calculate age-specific hospitalization probabilities, prophosp, the relative proportion of symptomatic cases by age is 
multiplied by the calibrated values for the probability of 80+ year-olds who are hospitalized. 
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